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Influence of different pre-processing methods in predicting sugarcane 
quality from near-infrared (NIR) spectral data

Abstract

The influence of different data pre-processing methods (smoothing by moving average (MA), 
multiplicative scatter correction (MSC), Savitzky-Golay (SG), standard normal variate (SNV) 
and mean normalization (MN) on the prediction of sugar content from sugarcane samples was 
investigated. The performance of these pre-processing methods was evaluated using spectral 
data collected from 292 sugarcane internode samples using a visible-shortwave near infrared 
spectroradiometer (VNIRS). Partial least square (PLS) method was applied to develop both 
calibration and prediction models for the samples. If no pre-processing method was applied, 
the coefficient of determination (R2) values for both reflectance and absorbance data were 0.81 
and 0.86 respectively. The highest prediction accuracy values were obtained when the data was 
treated with MSC method, where the R2 values for reflectance and absorbance being 0.85 and 
0.87, respectively. From this study, it was concluded that pre-processing can improve the model 
performances where MSC method was found to give the highest prediction accuracy value.

Introduction

In recent years, rapid development of near infrared 
spectroscopic (NIRS) techniques combined with 
multivariate analysis has enabled the technologies 
to be applied in sugarcane industries especially to 
predict quality level of the crop. Many studies have 
reported the application of spectroscopic methods 
to predict sugar content of sugarcane (Madsen et 
al., 2003; Mehrotra and Siesler, 2003; Taira et al., 
2010; Nawi et al., 2012, 2013; Nawi, Chen and 
Jensen, 2013). The application of spectroscopic 
method however requires the multivariate analysis to 
extract useful data from spectral data. In this process, 
data pre-processing method is a critical task in the 
knowledge discovery process to ensure a robust 
calibration and prediction models can be developed.

For any spectroscopic measurements, a large 
amount of spectral data collected from NIRS 
instruments usually contains a lot of useful analytical 
and background information such as light scattering, 
path length variations and random noise as well as 
sample information (Blanco and Illarroya, 2002). This 
problem is more obvious when the spectral data was 
collected from solid samples. Since the robustness of 
the calibration and prediction models is the primary 

requirement for spectroscopic measurements, 
removing unwanted background information and 
noise are very essential. 

The spectral data of solid sugarcane samples 
are influenced by their physical properties with 
scattering phenomena (which is wavelength-
dependent and non-linear) is the most common factor 
for causing error in absorbance values. In order to 
obtain reliable, accurate and stable calibration 
models, it is compulsory to pre-process spectral data 
before modelling (Cen and He, 2007). Spectral pre-
processing techniques are required to remove any 
irrelevant information including noise, uncertainties, 
variability, interactions and unrecognized features. 
Spectral pre-processing method should be used to 
minimize the influences of irrelevant information into 
spectra in order to be able to develop more simple and 
robust models (Blanco and Villarroya, 2002). Pre-
processing of spectral data is a key part of spectral 
analysis used to improve the quality and accuracy of 
the regression models (Wu et al., 2008). Thus, the 
goal of this study was to investigate the influence of 
different spectral pre-processing methods on partial 
least square (PLS) model performance for both 
reflectance and absorbance data.
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Materials and Methods

Crop samples
A total of 22 sugarcane stalks consist of 292 

internode samples were collected from the research 
plot belongs to the Bureau of Sugar Experimental 
Station (BSES), Bundaberg, Queensland. The stalks 
belong to commercial variety trials representing three 
different maturity stages, namely early maturing 
(Q155), mid-maturing (Q208) and late-maturing 
(Q190) crops. The Brix obtained from these three 
varieties ranged from 7.6 to 22.2°Brix. The stalk 
samples were harvested after eight months of planting. 
The leafy part of each stalk sample was removed. 
Then, the stalks were cut on the node portion into 
an individual internode using a cutter. Each internode 
sample was cut into four sections of approximately 
the same length, representing the node and internode 
areas (Figure 1). The detailed information about the 
samples preparation and their characteristic has been 
reported by Nawi, Chen and Jensen (2013).

Figure 1. Intact internode vs cut internode with scanning positions 
(Nawi, Chen and Jensen, 2013).

Instrumentation and spectral measurement
The spectral data reflected from the cross-

sectional surface of the cut internode was collected 
using a handheld visible/shortwave (325–1075 nm) 
near infrared spectroradiometer (Vis/SW-NIRS; 
FieldSpec HandHeld and FieldSpec Pro FR, from 
Analytical Spectral Devices (ASD), Inc., Boulder, 
CO, USA. The measurement was undertaken using 
the 25° field-of-view (FOV) of the spectroradiometer. 
The equipment was set to record the average of 20 
scans for each spectrum. Relative reflectance spectra 
were calculated by dividing the reflectance of the 
internode samples with the reflectance from the white 
reference panel.

The spectral data was collected inside a 
measurement box (900 mm × 600 mm × 450 mm). 
The box was constructed to eliminate the influence 

of ambient light on the spectral measurement and 
to ensure a consistent distance and measurement 
angle between the probe and samples (Nawi et al., 
2013). Two halogen lamps (Lowell Pro-Lamp 14.5 
V tungsten bulb, Ushio Lighting, Inc., Japan) were 
placed at a distance of 800 mm above the sample at 
the angle of 45° to illuminate the samples. 

All spectral data were stored in a computer and 
processed using the RS3 software for Windows 
(Analytical Spectral Devices, Boulder, CO, USA) 
designed with a graphical user interface. The 
reflectance spectra were transformed into ASCII 
format using the ASD ViewSpecPro software 
(Analytical Spectral Devices, Boulder, CO, USA). 
Then, the reflectance data (R) were transformed into 
absorbance data (A). In order to avoid a low signal-
to-noise ratio, only the wavelength regions between 
400 and 1000 nm were used for the calculations.

°Brix measurement
After the spectral measurement, each cut section 

was squeezed using a clamp to extract the juice 
samples. The juice from all cut sections of the same 
internode were collected and mixed in a container, 
shaken and poured onto a refractometer to measure 
the °Brix value. The °Brix values were measured 
using a hand-held °Brix refractometer (Model: 
RHB-32ATC, from Huake Instrument Co., Ltd, 
Baoan, Shenzhen, China; the °Brix range is 0–32% 
with automatic temperature compensation). The 
refractometer was cleaned after each measurement to 
avoid cross contamination. 

Spectral data pre-processing
The spectral data of solid samples is normally 

influenced by the skin roughness of the samples 
which can cause some problems in assessing their 
internal quality attributes. Furthermore, the spectral 
data normally contains background information such 
as light scattering, path length variations and random 
noise as well as sample information. In order to obtain 
reliable, accurate and stable calibration models, it is 
essential to pre-process spectral data before modeling 
(Cen and He, 2007).  Nicolaï et al. (2007) divided 
the pre-processing methods into four categories 
namely smoothing, standardization, normalization 
and differentiation. Smoothing techniques have been 
proposed to remove random noise from spectral data 
and to optimize the signal-to-noise ratio (Cen and He, 
2007). The most common smoothing techniques are 
moving average and the Savitzky–Golay algorithm 
(Næs et al., 2004). 

A standardization technique is used to divide the 
spectrum at every wavelength by the standard deviation 
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of the spectrum at a certain wavelength. Typically, 
variances of all wavelengths are standardized to one, 
which results in an equal influence of the variables 
in the model (Næs et al., 2004). A normalization 
technique is applied to compensate for additive 
(baseline shift) and multiplicative (tilt) effects in the 
spectral data, which are induced by physical effects 
such as the non-uniform scattering throughout the 
spectrum as the degree of scattering is dependent 
on the wavelength of the radiation, the particle size 
and the refractive index. Multiple scatter correction 
(MSC) and standard normal variate correction (SNV) 
are the most popular normalisation techniques. 
Differentiation methods include the first and second 
derivative are employed to remove background and 
increase spectral resolution (Cen and He, 2007).

Before calibration, the spectral data were pre-
processed for optimal performance. The effect of 
several pre-processing techniques on the performance 
of PLS models investigated in this study included 
smoothing by moving average with three segments 
(MA3) and nine segments (MA9) (Wu et al., 2008), 
multiplicative scatter correction (MSC), Savitzky‐
Golay first derivative (SG1), Savitzky‐Golay second 
derivative (SG2) (Swierenga et al., 1999), standard 
normal variate (SNV), mean normalization (MN) 
(Griffiths, 1995) and combinations of them. For 
comparison purposes, the raw spectral data without 
any pre-processing method was also analyzed. The 
performance of the models developed using different 
pre-processing methods were compared with one 
another based on R2 and root means square error of 
predictions (RMSEP) values. The pre-processing 
processes were implemented using the Unscrambler, 
V 9.6 software (Camo Process AS, Oslo, Norway).

Development of calibration and validation models
Prior to the development of a calibration model, 

principal component analysis (PCA) was applied to 
extract useful information from the spectra, decrease 
the noise and determine the optimum number of latent 
variables (Wu et al., 2008).  PCA is a well-known 
chemometrics method used to search for directions of 
maximum variability in sample grouping and using 
them as new axes called principle components (PCs) 
that can be used as new variables, instead of the 
original data, in the following calculations (Blanco 
and Illarroya, 2002). In this study, 10 PCs were used 
in all pre-processing methods to ensure the models 
comparable to each other. 

Partial least square (PLS) method was used 
to simultaneously consider the variable matrix Y 
(sugarcane °Brix) and the variable matrix X (spectral 
data). In the development of the PLS model, full 

cross validation (leave-one-out) was used to evaluate 
the quality and prevent over fitting of the calibration 
model (Arana et al., 2005).  In this paper, both PCA 
and PLS modelling were run using the Unscrambler 
V 9.6 software. 

External validation was used in this study to check 
the performance of the PLS models. The samples in 
the external validation set had not been used for the 
calibration development. Before calibration, samples 
were divided into two sets; 75% of the samples 
were used in the calibration model while 25% of the 
samples were used in the validation model. Samples 
for validation were selected by taking one of every 
four samples from the entire sample set, taking care 
to ensure that each set included samples that covered 
the entire range of °Brix values. 

Results and Discussion

Samples characteristics and spectral overview
A summary of statistical characteristics for 

calibration and prediction data sets of the internode 
samples is shown in Table 1. The calibration and 
prediction data sets show similar means, ranges and 
standard deviations, indicating that the selection 
of samples for each data set was appropriate. A 
relatively wide range of °Brix values was obtained 
due to the inclusion of three different varieties with 
different stage of maturity. The range of °Brix values 
for internode samples from the top to the bottom of 
the Q155, Q208 and Q190 varieties were 7.6 to 22.2, 
8 to 21.4 and 8 to 21, respectively.

Table 1 Summary of statistical characteristics of 
internode samples

Model No of 
sample Min Max Mean Standard 

Deviation
Calibration 220 7.5 22.2 17.86 3.04
Prediction 72 8.2 22 17.83 2.93

The typical raw absorbance and reflectance 
spectra (before any pre-processing method applied) 
of three internode samples having low (14.2°Brix), 
medium (18°Brix) and high (22°Brix) values, as 
measured by the vis/SW-NIR spectroradiometer, 
are shown in Figure 2(a) and 2(b) respectively. In 
both figures, no obvious difference could be seen in 
the shape of the spectra for different °Brix values. 
However, gaps could be clearly observed among 
these three spectra in the region of 700 to 1000 nm. 
These spectral patterns were due to different samples 
molecular vibration at different sugar concentration.  
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Figure 2. Typical raw spectral curve of sugarcane internode at 
different °Brix values:  (a) Absorbance spectra     (b) Reflectance 
spectra

Effects of different pre-processing methods on 
prediction accuracy 

The influence of different spectra pre-processing 
methods on PLS model performance for both 
reflectance and absorbance data collected from 
internode samples are shown in Table 2. For 
comparison purposes, the PLS model performance 
for spectral data without any pre-processing method 
(raw spectral data) is also shown.

From Table 2, it can be seen that if no pre-
processing method was applied, the R2 values for 
both reflectance and absorbance data were 0.81 
and 0.86 respectively. Absorbance data has indeed 
performed better than reflectance data. The highest 
R2 value was obtained when the data was treated 
with MSC, where the R2 values for reflectance and 
absorbance being 0.85 and 0.87, respectively. The 
RMSEP values for reflectance and absorbance were 
1.54 and 1.45°Brix, respectively. The MSC technique 
is the most popular normalization technique offered 
by most chemometrics software packages (Næs et 
al., 2004). MSC compensates for additive (baseline 
shift) and multiplicative (tilt) effects in the spectral 
data, which are induced by physical effects such as 
the non-uniform scattering throughout the spectrum 
because the degree of scattering is dependent on 
the wavelength of the radiation, the particle size 
and the refractive index. In contrast, the prediction 
models show lower accuracy when treated with SG2, 
or a combination of these methods because SG2 is 
normally used to remove slope of the spectral data 
(Swierenga et al., 1999). This observation is in good 
agreement with that reported by Montalvo et al. 
(1994).

Table 2 The effect of different pre-processing methods on the PLS models performance.

Pre-processing 
method

Reflectance Absorbance

Calibration Prediction Calibration Prediction

R2 RMSEC R2 RMSEP R2 RMSEC R2 RMSEP
Raw 0.81 1.79 0.81 1.72 0.83 1.70 0.86 1.52
MSC 0.88 1.44 0.85 1.54 0.87 1.49 0.89 1.45
SNV 0.87 1.48 0.84 1.59 0.85 1.60 0.86 1.49
SG1 0.92 1.22 0.80 1.78 0.91 1.24 0.76 1.90
SG2 0.75 2.20 0.39 2.84 0.70 2.15 0.69 2.09
MN 0.86 1.58 0.82 1.68 0.84 1.66 0.86 1.49
MA (3) 0.80 1.87 0.79 1.77 0.81 1.78 0.86 1.53
MA (9) 0.77 1.94 0.77 1.84 0.79 1.86 0.85 1.60
MSC + SNV 0.87 1.48 0.84 1.59 0.85 1.60 0.86 1.49
MA(3) + SG2 0.91 1.24 0.81 1.75 0.73 2.08 0.49 2.60
SG2 + MSC 0.92 1.20 0.78 1.83 0.49 2.65 0.46 2.58
MSC + SNV + SG2 0.93 1.15 0.79 1.80 0.76 1.99 0.39 2.88
* n for calibration model=220; n for prediction model=72.
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Reflectance data versus absorbance data
The prediction models for both absorbance and 

reflectance data were presented as the scatter plots 
as shown in Figure 3(a) and 3(b), respectively. The 
R2 for the models developed from absorbance and 
reflectance data were 0.87 and 0.85, respectively. 
Absorbance data performed better than reflectance 
data because the absorbance spectra contains the 
chemical components information such as sugar, 
while the reflectance spectra contain the information 
of the chemical components as well as scattering 
properties of the tissues (Nicolai et al., 2008). Since 
the spectral measurement was done on the flesh of 
the internode samples, the scattering problem was 
minimised. Overall, the prediction accuracy obtained 
from both reflectance and absorbance data could be 
considered as good, noting the heterogeneous nature 
of the stalk samples. The results indicated that the 
VNIRS and PLS models could provide a satisfactory 
method for predicting °Brix from stalk samples.

Conclusion

This study has demonstrated that vis/SW-NIR 
spectroscopy could be applied to predict sugarcane 
°Brix from internode samples. This study has also 
shown that the pre-processing could improve the 
performance of the calibration and prediction models. 
It was also found that absorbance spectra gave 
higher prediction accuracy compared to reflectance 
spectra. For raw spectral data, the R2 of prediction 
models for reflectance and absorbance data were 
0.81 and 0.86 respectively. However, after the data 
was treated with MSC method, the R2 of prediction 

models for reflectance and absorbance data were 
improved up to 0.85 and 0.87 respectively. Overall, 
it can be concluded that right pre-processing method 
can improve the performance of both calibration and 
prediction models for spectroscopic analysis. 
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